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Abstract— Available Indonesian dependency parsers can be 

considered worse than other languages’ parsers that have been 

researched thoroughly. Currently, Indonesia dependency 

parsers can’t reliably parse sentences with gerund(s) and/or 

ellipsis correctly. This is because of the sparse feature 

representation that causes difficulty in parsing these types of 

sentences. In this research, dense representation is proposed 

for Indonesian dependency parser. The use of dense word 

representation may allow better generalization and gives more 

information regarding the words to be parsed, which allows a 

more accurate parsing. The scope of the dependency parsing in 

this research is limited to well-formed Indonesian sentences, 

using the local transition-based parsing. Based on our 

experiments, we found that using word embedding instead of 

sparse word representation increases parsing accuracy 

significantly. 

 

Keywords—dependency parsing, neural network, word 

embedding, Indonesian parser, gerund, elipsis  

I. INTRODUCTION 

Dependency parsing is an important syntactic task in 

natural language processing. Dependency parsing is an 

NLP task used to determine the syntactical structures of 

the tokens/words in a sentence. The task has recently seen 

a significant development, especially with the 

development of the Universal Dependency corpus [1], 

which allows under-resourced languages to be researched 

with little difficulty. 

Even so, recent studies in Indonesian dependency 

parsers has not seen much traction. Most of the studies 

have not used the state-of-the-art parsing technique. 

Nizami & Purwarianti [2] used a modified graph-based 

algorithm.  Kuncoro [3] used an ensemble method using 

transition-based parsing. This line of work is then 

continued by Rahman & Purwarianti [4]. 

All parsers created by the studies described before, 

however, have not been able to parse several types of 

sentences. The first type is sentence containing gerund (a 

verb that acts as a noun). This type of sentence is difficult 

to be parsed because the parser often mistakes it as the 

root of the sentence. The second type is sentence with 

ellipsis (deletion of repetitive phrase in connected clauses). 

The parser often has difficulty on parsing the ellipsis 

clauses. 

Rahman & Purwarianti [4] hypothesized that the reason 

for this parsing error is because of the feature 

representation. The parsers used by Rahman & 

Purwarianti, MaltParser and MSTParser, use a one-hot, 

sparse representation. This representation most of the time 

has a large feature space and often difficult to generalize 

because of its discrete property. The one-hot 

representation also does not contain any context 

information, which is needed for syntactical tasks like 

parsing. 

In this paper, we propose in using dense representation 

for Indonesian dependency parser. Dense representation, 

also commonly known as distributed representation, can 

represent a feature from one-hot representation with much 

less feature space and uses real numbers, which are easier 

to be generalized by machine learning algorithm. The 

dense representation also inherently contains the 

contextual information of the feature, which is 

significantly needed for dependency parsing. 

This paper is structured as follows. Section 2 describes 

the background and relevant works related to dependency 

parsing, dense representation (particularly word 

embedding), and dependency parser that uses dense 

representation. Section 3 describes our proposed 

dependency parser that uses dense representation. Section 

4 describes the dataset used for training the embedding 

and the dependency parser. Section 5 describes the 

experiment results and our analysis regarding the 

experiment results. We limit the scope of dependency 

parsing to greedy transition-based parsing for well-formed 

Indonesian sentences. 

II. BACKGROUND & RELATED WORKS 

A. Dependency Parsing 

Dependency parsing is a syntactical parsing task that 

determines how each token modifies another token in a 

sentence. The result of this is a dependency graph, which 

is represented as a directed graph. Each vertex represents 

a token in the sentence, while each edge represents a 
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dependency relation from the head token to modifier 

token. Fig. 1 shows an example of dependency graph for 

Indonesian sentence Dugaan itu tidak meleset (That 

conjecture does not miss). 

 

 

Fig. 1. Kiperwasser & Goldberg neural network parsing architecture 

We focus the scope of our study on greedy transition-

based parsers [5]. A transition-based parser uses a state 

machine to parse sentences. The parser used a sequence of 

transitions to move the parsing state into a state that shows 

a complete dependency tree. A transition-based parser 

uses a transition system, which consists of the following 

four elements: 

1. A list of possible states. The most-used 

representation for a parsing state is a list (buffer) 

containing unprocessed tokens (B), a stack 

containing currently processed tokens (S), and a list 

containing dependency relations created (R). A 

dependency relation is a triple (x, y, r), where x is the 

child token, y is the parent token, and r is the 

dependency relation label. 

2. A list of possible transitions. A transition can change 

the current parsing state, which can add or remove 

tokens from a list (mostly on B or S), move tokens 

from one list to another (from B to S), and/or add 

dependency relations (on R). 

3. A start state, which consists of B containing the 

sentence tokens and special dummy token ROOT, 

empty S, and empty R. 

4. An end state, which consists of empty B, S 

containing only ROOT, and non-empty R.  

Some of the most used transition systems are the arc-

eager [6] and arc-hybrid [7] transition system. Our work 

uses the arc-hybrid transition system, which has three 

possible transitions to use: 

1. SHIFT (b0|B, S, R) 

= (B, S|b0, R) 

2. LEFTrel (b0|B, S|s1|s0, R)   

= (b0|B, S|s1, R ∪ {b0, s0, rel}) 

3. RIGHTrel (B, S|s1|s0, R) 
= (B, S|s1, R ∪ {s1, s0, rel}) 

A parsing using the transition-based parser is done by 

the following steps. First, a start state is created based on 

the input sentence. After that, at each state, the best 

transition is determined by using an oracle. The oracle is 

modelled as a parameterized function that can determine 

the score for a transition on a parsing state. The oracle is 

trained using a dependency treebank that has been 

transformed into a list of states and transitions. The 

parsing ends when a terminal state is reached. This type of 

parsing is called greedy parsing because it only considers 

the best transition for each state. There’s another type of 

transition-based parsing called beam-search transition-

based parsing [8], which we will not discuss in this paper. 

 

Algorithm 1 Greedy transition-based parsing 

1. Input: sentence s = w1, w2, …, wn, POS tags p = p1, 

p2, …, pn, oracle O that accepts two inputs: state c and 

next transition t, and outputs a score 

2. c  INITIAL_STATE(s) 

3. while not TERMINAL_STATE(c) do 

4.     tbest  arg maxt∈LEGAL_STATE(c) O(c, t) 

5.     c  CHANGE_STATE(c, tbest) 

6. return TREE(c) 

B. Dense Word Representation 

Dense representation, also called distributed 

representation or embedding, is currently one of the most 

popular feature representations. It is a dense, low-

dimensional, and real-valued vector that represents a 

feature’s syntactical properties. A dense representation 

has two main advantages over one-hot representation for 

being easier to generalize and faster to process. The dense 

representation also has contextual information regarding 

the feature itself, because they are most often trained 

using a neural network, like word2vec [9], [10]. From this 

point onward, we will call the dense word representation 

as word embedding. 

We use three types of word embedding in this paper: 

word2vec [9], [10], wang2vec [11], and fasttext [12]. 

word2vec trains the word embedding using a neural 

network that has a log-linear complexity, which allows 

fast training. It uses no non-linear hidden layer and shared 

projection layer for all words. Mikolov proposed two 

architectures for efficient word embedding learning: 

CBOW (Continuous Bag of Words) and skip n-gram. The 

CBOW training trains a word embedding by predicting a 

word (focus word) given the n words around it (context 

words). The skip-gram training does the opposite by 

predicting the words around the focus word, given the 

focus word itself. wang2vec does the same thing as 

word2vec, with additional positional information 

embedded during the prediction. This approach allows 

training a word embedding that is more attuned for 

syntactical tasks. fasttext is also a derivative of word2vec. 

However, it also trains a sub-word embedding for each 

sub-word present in a word. This allows a better coverage 

of words, which reduces the probability of a word not 

having a word embedding (OOV, out-of-vocabulary). 

C. Dependency Parsing with Word Embedding 

There are many ways to incorporate word embedding 

into dependency parsing. The most common way to do 

this is by representing the word itself using the word 

embedding. In this paper, we use an architecture provided 

by Kiperwasser & Goldberg [13] as our main reference. 
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Kiperwasser & Goldberg uses a Bi-LSTM to represent 

a feature vector for each token in the sentence 

(represented by xi in Fig. 2). xi is the concatenation of the 

token vector e(wi) and the token’s POS vector e(pi): 

 

xi = e(wi) ∘ e(pi) 

 

Both e(wi) and e(pi) are trained along with the parser, but 

e(wi) in particular can be initialized with a pre-trained 

word embedding, which will be fine-tuned while training 

the parser. 

Afterwards, the forward and backward vector for the 

current token (Vfi and Vbi respectively) are created by 

using the Bi-LSTM network. Both Vfi and Vbi are then 

concatenated to create the final feature vector to represent 

the token (denoted by Vi in Fig. 2). 

 

Vfi  = LSTMf (xi:n, i) 

Vbi  = LSTMb(xi:n, i) 

Vi  = Vfi ∘ Vbi 

 

After that, for the current sentence, the feature vectors 

present for each token is used to represent the state input 

in a transition-based parser in a separate, multi-layer 

perceptron (MLP) neural network. Kiperwasser & 

Goldberg uses the top three tokens on S and the first token 

of B to represent the parsing state (Example in Fig. 2 

shows the first the, jumped, and over as the top three 

tokens in S, while the second the is the top token in B). 

The neural network has one hidden layer with tanh 

activation function and a softmax denoting the probability 

of each transition. 

 

O(c, t)  = MLP(fc)[t] 

MLP(fc) = softmax(W2 . tanh(W1 . fc+ b1) + b2) 

fc  = Vs1 ∘ Vs1 ∘ Vs0 ∘ Vb0 

 

W1, W2, b1, and b2 are the parameters of the MLP.  

The parser uses greedy transition-based parsing with 

arc-hybrid transition system, with the MLP in the neural 

network acting as the dynamic oracle. Fig. 2 shows the 

architecture of the neural network parser. 

III. PROPOSED ARCHITECTURE FOR INDONESIAN 

DEPENDENCY PARSER 

We extend Kiperwasser & Goldberg’s architecture [13] 

by adding a word embedding based on a Bi-LSTM that 

accepts a sequence of character embedding as the input. 

One of the main problems in Kiperwasser & Goldberg’s 

architecture is the lack of OOV handling when 

representing a word using the Bi-LSTM feature. To 

overcome this problem, we used another way to represent 

an OOV word with the word embedding, by using another 

Bi-LSTM. 

The character-based Bi-LSTM accepts a sequence of 

characters present in the token. Each character in the 

sequence is represented by a character embedding. The 

embedding for the token is then created by concatenating 

the final forward and the backward vector of the 

character-based Bi-LSTM (xf and xb respectively). Given 

an n-characters token w consisting of characters c1, …, cn, 

we can associate each character with character embedding 

e(ci), which will then be used on the character-based Bi-

LSTM in order to get the token embedding xw. Like its 

word counterpart, the character embeddings are also 

trained along with the parser. 

 

xf = CharLSTMf (e(c)i:n, n) 

xb = CharLSTMb (e(c)i:n, n) 

xw = xf ∘ xb 

 

In this study, we limit the character-based Bi-LSTM to 

be used only for OOV words. There are two reasons for 

this limitation. First, it allows the character-based Bi-

LSTM to be attuned particularly to words that rarely 

appear in a sentence. Second, it allows the word to adapt 

to the structure of the regular word embedding, especially 

if the regular word embeddings are initialized from a pre-

trained embedding.  Fig. 3 shows the architecture for the 

character embedding.  

IV. DATASET 

There are two types of dataset used in this study. The 

first one is used to train the word embedding, while the 

second one is used to train the dependency parser. The 

next two sections describe these datasets further.  

A. Word Embedding Corpus 

To train the word embedding, we use the pre-processed 

corpus consisting of sentences from the following sources. 

1)  Wikipedia dump (updated February 1, 2018), 

containing 5,015,997 sentences. 

2)  List of sentences from Universal Dependencies 2.1 

(only the train and dev sentences), containing 5401 

sentences. 

3)  List of example sentences taken from Alwi’s 

Indonesian grammar book [15], totaling in 2349 sentences. 

Below are the pre-processing steps we did to the corpus. 

These pre-processing steps are necessary to reduce the 

word vocabulary and get a word embedding matrix with a 

better representative quality 

1)  Change all the letters to lowercase. 

2)  Tokenize the sentences into separate words using 

NLTK’s punkt model. Further tokenization is done by 

separating the words according to the punctuation marks 

(e.g. “paru-paru” becomes “paru”, “-“, and “paru”). 

3)  Change all numerals into special token “_NUM_”, 

after the tokenization in step (2) is finished. 
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Fig. 2. Kiperwasser & Goldberg neural network parsing architecture 

 

 
Fig. 3. Character embedding architecture 
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Fig. 4. (a) Gold-standard dependency parsing for sentence Mendaki gunung sekarang tidak lagi didominasi oleh para pecinta alam atau mereka yang memiliki 

hobi bertualang di alam bebas (T/L: Mountain-climbing is not dominated by nature lovers or those who have a hobby of venturing to the wild nature 

anymore.) (b) Baseline parsing result of the same sentence (c) Parsing result of the same sentence by our proposed approach 

B. Dependency Corpus 

We used the edited and filtered Universal Dependencies 2.1 

corpus to train the dependency parsers. We used the train part 

of the dependency corpus as the training data, and the merged 

dev and test part of the dependency corpus as the testing data. 

We also used a manually annotated corpus containing 50 

sentences with ellipsis (focused on the anaphoric and 

cataphoric ellipsis) and 50 sentences with gerund(s) for a 

separate experiment scenario. 

We retagged the POS of each token present in all corpora 

using our POS tagger, which uses INACL POS scheme. After 

that, each sentence is reparsed using UDPipe, which uses the 

exact same dependency corpus (including the dev and test data) 

as the training data. 

V. EXPERIMENTS 

A. Experiment Scenarios 

We conducted several experiments with various parsing 

models based on the word embedding used to train the model. 

We created 36 different models based on the following 

parameters: 

1)  The training algorithm: word2vec, wang2vec, and 

fasttext 

2)  Training scheme: CBOW and skipgram 

3)  Context window size: 1, 2, and 5 

4)  Use character-based embedding for OOV words: yes 

and no 

We also created baseline models based on Rahman & 

Purwarianti’s list of baseline parsers, along with the ensemble 

model created by them [4]. Below are the baseline parsers 

used in this study. 

1)  MaltParser Nivre (arc-eager and arc-standard) 

2)  MaltParser Covington (projective and non-projective) 

3)  MaltParser Stack (eager, lazy, and projective) 

4)  MaltParser Planar 

5)  MaltParser 2-Planar 

6)  MSTParser Eisner 

7)  MSTParser Chu-Liu-Edmonds 

8)  Ensemble model using Eisner, Chu-Liu-Edmonds, and 

Planar algorithm 

Finally, we compared the performance of the baseline and 

the neural network parsers on sentences containing ellipsis and 

gerund. We used the best baseline parser and the best neural 

network parser in this final scenario. For the sentences with 

ellipsis, we checked overall results of the parser, while for the 

sentences with gerund(s), we only check the dependencies 

between the predicate of the sentence and the gerund word 

itself. 

There are two evaluation metrics used in this study: UAS 

(Unlabeled Assignment Score) and LAS (Labeled Assignment 

Score). UAS score is determined by the number of tokens that 

have the correct parent. LAS score determined by the number 

of correct parent and dependency label the tokens have. 

B. Experimental Results 

Table I shows the baseline parsers results. We can see that 

the Planar algorithm from MaltParser produced the parser with 
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the best UAS and LAS (76.91% and 67.80% respectively). 

This contrasts with Rahman’s results [4], which states the 

graph-based parsing algorithm as the best parser for 

Indonesian language. However, after checking the errors in the 

graph-based parser, we found that most of the errors were 

because of the incorrect POS tags assigned to some words in 

sentences with more than 1 predicate. 

TABEL I 

BASELINE PARSER RESULT 

No Baseline Parser 
Score 

UAS LAS 

1 MaltParser Nivre arc-eager 76.87% 66.71% 

2 MaltParser Nivre arc-standard 74.92% 66.95% 

3 
MaltParser Covington non-
projective 

72.64% 65.17% 

4 MaltParser Covington projective 72.64% 65.55% 

5 MaltParser Stack projective 74.13% 64.36% 

6 MaltParser Stack eager 75.00% 67.33% 

7 MaltParser Stack lazy 74.51% 67.02% 

8 MaltParser Planar 76.91% 67.80% 

9 MaltParser 2-Planar 76.31% 67.73% 

10 MSTParser Eisner 74.18% 37.23% 

11 MSTParser Chu-Liu-Edmonds 74.02% 35.61% 

12 
Ensemble Eisner – Chu-Liu-

Edmonds - Planar 
74.02% 63.45% 

 

We can also see from Table I that all parsers from 

MSTParser have a low LAS score. We deduced that the low 

LAS score is caused by MSTParser’s first-order feature, which 

only considers the candidate head and dependent. The lack of 

context features in the first-order graph-based parser causes a 

considerably worse performance in labeling dependency than 

the transition-based parser, which is much richer in feature 

representation.  

Table II shows the neural network parsers results. We can 

see that the usage of word embedding allows significantly 

better parsing results, with 5% increase. The usage of word 

embedding prevents most common mistakes that tend to 

happen in non-word embedding parsers. Even with several 

POS tagger errors in the corpora, the neural network parser is 

still able to achieve a better UAS and LAS scores consistently. 

Unfortunately, we couldn’t determine how the character-

based embedding contribute to parsing accuracy. The neural 

network parsers that use the character-based embedding 

perform better and worse at the same time than the baseline 

parsers, especially on OOV words. The difference in 

performance is affected by two factors. The first one is the 

addition of character-based embedding also changes how 

much the other weights are updated. The second one is how 

the character-embedding replaces the pre-trained embedding. 

The pre-trained embedding is created by using the projection 

matrix (which is actually the weights coming from the input 

word), while the character-based embedding is created by 

concatenating two output vectors created by the character-

based Bi-LSTM. The representation difference causes the 

character-based embedding to be treated as noise. 

Table III shows the parsing results for sentences with 

ellipsis and gerund. Using the neural network parser with 

word embedding increases the parsing accuracy for both types 

of ellipsis. A surprising result, however, can be seen on the 

gerund result. In this case, the neural network parser performs 

considerably worse than the baseline parser. In most cases, the 

neural network parser almost consistently assigned the gerund 

as the root of the sentence, especially if the gerund shows 

before the root verb. 

Fig. 4 shows an example of a case where the gerund is 

parsed incorrectly. In this example, Mendaki from Mendaki 

gunung is a gerund and should have created a dependency 

triple (Mendaki, didominasi, csubj). Instead, our parser created 

a dependency triple (Mendaki, ROOT, root). Another wrong 

parsing example (dependency trees not shown in this paper) is 

Menurutnya, bersenandung menenangkan jiwa (According to 

him, humming soothes your soul). In this case, our parser 

made a dependency triple (bersenandung, ROOT, root) while 

it should have been (menenangkan, ROOT, root). 

From this result, we can conclude that adding the word 

embedding does not solve the gerund parsing problem. We 

found out that the problem lies on the dependency labels. Our 

current dataset treats all subjects, regardless of their form, as 

nsubj (nominal subject), while they should have been treated 

as csubj (clausal subject). Since there are too few sentences 

that have gerund(s) in the dataset, it caused difficulties in 

recognizing a gerund as a nominal instead of as a predicate. 

The POS tag of gerunds may also contribute to the parsing 

difficulties, due to it also having a verb POS tag, which is 

often attributed as the predicate of the sentence. The lack of 

verb forms that specialize as a gerund (like VBG in Penn 

Treebank POS tags) makes it difficult for Indonesian parsers 

to differentiate the gerunds and the predicates.    

VI. CONCLUSIONS 

 

We have modified the available Indonesian dependency 

corpus by using standard INACL POS Tags and adding 50 

sentences with gerund and ellipsis. We also created a neural 

network dependency parser that uses word embedding as one 

of the main features. We expanded the neural network parser 

based on Kiperwasser & Goldberg’s architecture by adding a 

character-based embedding.  
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TABLE I.  NEURAL NETWORK PARSERS RESULTS 

No Embedding 
CBOW / 

Skipgram 

Window 

size 

Score without character 

embedding 

Score with 

character 

embedding 

UAS LAS UAS LAS 

1 

word2vec 

CBOW 1 81.89% 75.72% 82.65% 76.51% 

2 Skipgram 1 81.81% 75.71% 82.45% 76.06% 

3 CBOW 2 82.09% 75.95% 82.17% 75.96% 

4 Skipgram 2 82.26% 75.78% 81.94% 75.72% 

5 CBOW 5 82.41% 75.93% 82.30% 75.92% 

6 Skipgram 5 82.08% 75.81% 82.02% 75.74% 

7 

wang2vec 

 

CBOW 1 81.89% 75.61% 82.11% 75.97% 

8 Skipgram 1 82.56% 76.04% 81.54% 75.26% 

9 CBOW 2 82.32% 76.18% 82.30% 75.91% 

10 Skipgram 2 81.90% 75.80% 81.96% 75.85% 

11 CBOW 5 82.16% 75.89% 82.13% 75.81% 

12 Skipgram 5 82.30% 76.01% 81.98% 75.76% 

13 

fasttext 

CBOW 1 82.33% 76.00% 82.06% 75.71% 

14 Skipgram 1 81.58% 75.37% 82.11% 75.83% 

15 CBOW 2 81.92% 75.59% 82.08% 75.85% 

16 Skipgram 2 82.21% 75.70% 82.28% 76.04% 

17 CBOW 5 82.14% 75.71% 82.18% 76.00% 

18 Skipgram 5 82.02% 75.82% 82.19% 76.05% 

 

TABLE II.  PARSER RESULTS ON SENTENCES WITH ELLIPSIS AND GERUND 

No Parser 
Anaphora Cataphora Gerund 

UAS LAS UAS LAS UAS 

1 MaltParser Planar 81.55% 74.36% 77.93% 73.81% 24% 

2 
Kiperwasser & Goldberg, without character 

embedding, wang2vec, window 1, CBOW 
84.22% 80.22% 84.79% 80.99% 12% 
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