

JLK
Vol 3, No 1
Maret 2020

Submitted 07-03-2020; Revised 26-03-2020; Accepted 31-03-2020 12

Dense Word Representation Utilization in

Indonesian Dependency Parsing
Arief Rahman, Ayu Purwarianti

School of Electrical Engineering and Informatics, Institut Teknologi Bandung

Jl. Ganesha No. 10, Bandung 40132
123516008@std.stei.itb.ac.id

2ayu@stei.itb.ac.id

Abstract— Available Indonesian dependency parsers can be

considered worse than other languages’ parsers that have been

researched thoroughly. Currently, Indonesia dependency

parsers can’t reliably parse sentences with gerund(s) and/or

ellipsis correctly. This is because of the sparse feature

representation that causes difficulty in parsing these types of

sentences. In this research, dense representation is proposed

for Indonesian dependency parser. The use of dense word

representation may allow better generalization and gives more

information regarding the words to be parsed, which allows a

more accurate parsing. The scope of the dependency parsing in

this research is limited to well-formed Indonesian sentences,

using the local transition-based parsing. Based on our

experiments, we found that using word embedding instead of

sparse word representation increases parsing accuracy

significantly.

Keywords—dependency parsing, neural network, word

embedding, Indonesian parser, gerund, elipsis

I. INTRODUCTION

Dependency parsing is an important syntactic task in

natural language processing. Dependency parsing is an

NLP task used to determine the syntactical structures of

the tokens/words in a sentence. The task has recently seen

a significant development, especially with the

development of the Universal Dependency corpus [1],

which allows under-resourced languages to be researched

with little difficulty.

Even so, recent studies in Indonesian dependency

parsers has not seen much traction. Most of the studies

have not used the state-of-the-art parsing technique.

Nizami & Purwarianti [2] used a modified graph-based

algorithm. Kuncoro [3] used an ensemble method using

transition-based parsing. This line of work is then

continued by Rahman & Purwarianti [4].

All parsers created by the studies described before,

however, have not been able to parse several types of

sentences. The first type is sentence containing gerund (a

verb that acts as a noun). This type of sentence is difficult

to be parsed because the parser often mistakes it as the

root of the sentence. The second type is sentence with

ellipsis (deletion of repetitive phrase in connected clauses).

The parser often has difficulty on parsing the ellipsis

clauses.

Rahman & Purwarianti [4] hypothesized that the reason

for this parsing error is because of the feature

representation. The parsers used by Rahman &

Purwarianti, MaltParser and MSTParser, use a one-hot,

sparse representation. This representation most of the time

has a large feature space and often difficult to generalize

because of its discrete property. The one-hot

representation also does not contain any context

information, which is needed for syntactical tasks like

parsing.

In this paper, we propose in using dense representation

for Indonesian dependency parser. Dense representation,

also commonly known as distributed representation, can

represent a feature from one-hot representation with much

less feature space and uses real numbers, which are easier

to be generalized by machine learning algorithm. The

dense representation also inherently contains the

contextual information of the feature, which is

significantly needed for dependency parsing.

This paper is structured as follows. Section 2 describes

the background and relevant works related to dependency

parsing, dense representation (particularly word

embedding), and dependency parser that uses dense

representation. Section 3 describes our proposed

dependency parser that uses dense representation. Section

4 describes the dataset used for training the embedding

and the dependency parser. Section 5 describes the

experiment results and our analysis regarding the

experiment results. We limit the scope of dependency

parsing to greedy transition-based parsing for well-formed

Indonesian sentences.

II. BACKGROUND & RELATED WORKS

A. Dependency Parsing

Dependency parsing is a syntactical parsing task that

determines how each token modifies another token in a

sentence. The result of this is a dependency graph, which

is represented as a directed graph. Each vertex represents

a token in the sentence, while each edge represents a

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 13

dependency relation from the head token to modifier

token. Fig. 1 shows an example of dependency graph for

Indonesian sentence Dugaan itu tidak meleset (That

conjecture does not miss).

Fig. 1. Kiperwasser & Goldberg neural network parsing architecture

We focus the scope of our study on greedy transition-

based parsers [5]. A transition-based parser uses a state

machine to parse sentences. The parser used a sequence of

transitions to move the parsing state into a state that shows

a complete dependency tree. A transition-based parser

uses a transition system, which consists of the following

four elements:

1. A list of possible states. The most-used

representation for a parsing state is a list (buffer)

containing unprocessed tokens (B), a stack

containing currently processed tokens (S), and a list

containing dependency relations created (R). A

dependency relation is a triple (x, y, r), where x is the

child token, y is the parent token, and r is the

dependency relation label.

2. A list of possible transitions. A transition can change

the current parsing state, which can add or remove

tokens from a list (mostly on B or S), move tokens

from one list to another (from B to S), and/or add

dependency relations (on R).

3. A start state, which consists of B containing the

sentence tokens and special dummy token ROOT,

empty S, and empty R.

4. An end state, which consists of empty B, S

containing only ROOT, and non-empty R.

Some of the most used transition systems are the arc-

eager [6] and arc-hybrid [7] transition system. Our work

uses the arc-hybrid transition system, which has three

possible transitions to use:

1. SHIFT (b0|B, S, R)

= (B, S|b0, R)

2. LEFTrel (b0|B, S|s1|s0, R)

= (b0|B, S|s1, R ∪ {b0, s0, rel})

3. RIGHTrel (B, S|s1|s0, R)
= (B, S|s1, R ∪ {s1, s0, rel})

A parsing using the transition-based parser is done by

the following steps. First, a start state is created based on

the input sentence. After that, at each state, the best

transition is determined by using an oracle. The oracle is

modelled as a parameterized function that can determine

the score for a transition on a parsing state. The oracle is

trained using a dependency treebank that has been

transformed into a list of states and transitions. The

parsing ends when a terminal state is reached. This type of

parsing is called greedy parsing because it only considers

the best transition for each state. There’s another type of

transition-based parsing called beam-search transition-

based parsing [8], which we will not discuss in this paper.

Algorithm 1 Greedy transition-based parsing

1. Input: sentence s = w1, w2, …, wn, POS tags p = p1,

p2, …, pn, oracle O that accepts two inputs: state c and

next transition t, and outputs a score

2. c  INITIAL_STATE(s)

3. while not TERMINAL_STATE(c) do

4. tbest  arg maxt∈LEGAL_STATE(c) O(c, t)

5. c  CHANGE_STATE(c, tbest)

6. return TREE(c)

B. Dense Word Representation

Dense representation, also called distributed

representation or embedding, is currently one of the most

popular feature representations. It is a dense, low-

dimensional, and real-valued vector that represents a

feature’s syntactical properties. A dense representation

has two main advantages over one-hot representation for

being easier to generalize and faster to process. The dense

representation also has contextual information regarding

the feature itself, because they are most often trained

using a neural network, like word2vec [9], [10]. From this

point onward, we will call the dense word representation

as word embedding.

We use three types of word embedding in this paper:

word2vec [9], [10], wang2vec [11], and fasttext [12].

word2vec trains the word embedding using a neural

network that has a log-linear complexity, which allows

fast training. It uses no non-linear hidden layer and shared

projection layer for all words. Mikolov proposed two

architectures for efficient word embedding learning:

CBOW (Continuous Bag of Words) and skip n-gram. The

CBOW training trains a word embedding by predicting a

word (focus word) given the n words around it (context

words). The skip-gram training does the opposite by

predicting the words around the focus word, given the

focus word itself. wang2vec does the same thing as

word2vec, with additional positional information

embedded during the prediction. This approach allows

training a word embedding that is more attuned for

syntactical tasks. fasttext is also a derivative of word2vec.

However, it also trains a sub-word embedding for each

sub-word present in a word. This allows a better coverage

of words, which reduces the probability of a word not

having a word embedding (OOV, out-of-vocabulary).

C. Dependency Parsing with Word Embedding

There are many ways to incorporate word embedding

into dependency parsing. The most common way to do

this is by representing the word itself using the word

embedding. In this paper, we use an architecture provided

by Kiperwasser & Goldberg [13] as our main reference.

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 14

Kiperwasser & Goldberg uses a Bi-LSTM to represent

a feature vector for each token in the sentence

(represented by xi in Fig. 2). xi is the concatenation of the

token vector e(wi) and the token’s POS vector e(pi):

xi = e(wi) ∘ e(pi)

Both e(wi) and e(pi) are trained along with the parser, but

e(wi) in particular can be initialized with a pre-trained

word embedding, which will be fine-tuned while training

the parser.

Afterwards, the forward and backward vector for the

current token (Vfi and Vbi respectively) are created by

using the Bi-LSTM network. Both Vfi and Vbi are then

concatenated to create the final feature vector to represent

the token (denoted by Vi in Fig. 2).

Vfi = LSTMf (xi:n, i)

Vbi = LSTMb(xi:n, i)

Vi = Vfi ∘ Vbi

After that, for the current sentence, the feature vectors

present for each token is used to represent the state input

in a transition-based parser in a separate, multi-layer

perceptron (MLP) neural network. Kiperwasser &

Goldberg uses the top three tokens on S and the first token

of B to represent the parsing state (Example in Fig. 2

shows the first the, jumped, and over as the top three

tokens in S, while the second the is the top token in B).

The neural network has one hidden layer with tanh

activation function and a softmax denoting the probability

of each transition.

O(c, t) = MLP(fc)[t]

MLP(fc) = softmax(W2 . tanh(W1 . fc+ b1) + b2)

fc = Vs1 ∘ Vs1 ∘ Vs0 ∘ Vb0

W1, W2, b1, and b2 are the parameters of the MLP.

The parser uses greedy transition-based parsing with

arc-hybrid transition system, with the MLP in the neural

network acting as the dynamic oracle. Fig. 2 shows the

architecture of the neural network parser.

III. PROPOSED ARCHITECTURE FOR INDONESIAN

DEPENDENCY PARSER

We extend Kiperwasser & Goldberg’s architecture [13]

by adding a word embedding based on a Bi-LSTM that

accepts a sequence of character embedding as the input.

One of the main problems in Kiperwasser & Goldberg’s

architecture is the lack of OOV handling when

representing a word using the Bi-LSTM feature. To

overcome this problem, we used another way to represent

an OOV word with the word embedding, by using another

Bi-LSTM.

The character-based Bi-LSTM accepts a sequence of

characters present in the token. Each character in the

sequence is represented by a character embedding. The

embedding for the token is then created by concatenating

the final forward and the backward vector of the

character-based Bi-LSTM (xf and xb respectively). Given

an n-characters token w consisting of characters c1, …, cn,

we can associate each character with character embedding

e(ci), which will then be used on the character-based Bi-

LSTM in order to get the token embedding xw. Like its

word counterpart, the character embeddings are also

trained along with the parser.

xf = CharLSTMf (e(c)i:n, n)

xb = CharLSTMb (e(c)i:n, n)

xw = xf ∘ xb

In this study, we limit the character-based Bi-LSTM to

be used only for OOV words. There are two reasons for

this limitation. First, it allows the character-based Bi-

LSTM to be attuned particularly to words that rarely

appear in a sentence. Second, it allows the word to adapt

to the structure of the regular word embedding, especially

if the regular word embeddings are initialized from a pre-

trained embedding. Fig. 3 shows the architecture for the

character embedding.

IV. DATASET

There are two types of dataset used in this study. The

first one is used to train the word embedding, while the

second one is used to train the dependency parser. The

next two sections describe these datasets further.

A. Word Embedding Corpus

To train the word embedding, we use the pre-processed

corpus consisting of sentences from the following sources.

1) Wikipedia dump (updated February 1, 2018),

containing 5,015,997 sentences.

2) List of sentences from Universal Dependencies 2.1

(only the train and dev sentences), containing 5401

sentences.

3) List of example sentences taken from Alwi’s

Indonesian grammar book [15], totaling in 2349 sentences.

Below are the pre-processing steps we did to the corpus.

These pre-processing steps are necessary to reduce the

word vocabulary and get a word embedding matrix with a

better representative quality

1) Change all the letters to lowercase.

2) Tokenize the sentences into separate words using

NLTK’s punkt model. Further tokenization is done by

separating the words according to the punctuation marks

(e.g. “paru-paru” becomes “paru”, “-“, and “paru”).

3) Change all numerals into special token “_NUM_”,

after the tokenization in step (2) is finished.

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 15

Fig. 2. Kiperwasser & Goldberg neural network parsing architecture

Fig. 3. Character embedding architecture

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 16

Fig. 4. (a) Gold-standard dependency parsing for sentence Mendaki gunung sekarang tidak lagi didominasi oleh para pecinta alam atau mereka yang memiliki

hobi bertualang di alam bebas (T/L: Mountain-climbing is not dominated by nature lovers or those who have a hobby of venturing to the wild nature

anymore.) (b) Baseline parsing result of the same sentence (c) Parsing result of the same sentence by our proposed approach

B. Dependency Corpus

We used the edited and filtered Universal Dependencies 2.1

corpus to train the dependency parsers. We used the train part

of the dependency corpus as the training data, and the merged

dev and test part of the dependency corpus as the testing data.

We also used a manually annotated corpus containing 50

sentences with ellipsis (focused on the anaphoric and

cataphoric ellipsis) and 50 sentences with gerund(s) for a

separate experiment scenario.

We retagged the POS of each token present in all corpora

using our POS tagger, which uses INACL POS scheme. After

that, each sentence is reparsed using UDPipe, which uses the

exact same dependency corpus (including the dev and test data)

as the training data.

V. EXPERIMENTS

A. Experiment Scenarios

We conducted several experiments with various parsing

models based on the word embedding used to train the model.

We created 36 different models based on the following

parameters:

1) The training algorithm: word2vec, wang2vec, and

fasttext

2) Training scheme: CBOW and skipgram

3) Context window size: 1, 2, and 5

4) Use character-based embedding for OOV words: yes

and no

We also created baseline models based on Rahman &

Purwarianti’s list of baseline parsers, along with the ensemble

model created by them [4]. Below are the baseline parsers

used in this study.

1) MaltParser Nivre (arc-eager and arc-standard)

2) MaltParser Covington (projective and non-projective)

3) MaltParser Stack (eager, lazy, and projective)

4) MaltParser Planar

5) MaltParser 2-Planar

6) MSTParser Eisner

7) MSTParser Chu-Liu-Edmonds

8) Ensemble model using Eisner, Chu-Liu-Edmonds, and

Planar algorithm

Finally, we compared the performance of the baseline and

the neural network parsers on sentences containing ellipsis and

gerund. We used the best baseline parser and the best neural

network parser in this final scenario. For the sentences with

ellipsis, we checked overall results of the parser, while for the

sentences with gerund(s), we only check the dependencies

between the predicate of the sentence and the gerund word

itself.

There are two evaluation metrics used in this study: UAS

(Unlabeled Assignment Score) and LAS (Labeled Assignment

Score). UAS score is determined by the number of tokens that

have the correct parent. LAS score determined by the number

of correct parent and dependency label the tokens have.

B. Experimental Results

Table I shows the baseline parsers results. We can see that

the Planar algorithm from MaltParser produced the parser with

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 17

the best UAS and LAS (76.91% and 67.80% respectively).

This contrasts with Rahman’s results [4], which states the

graph-based parsing algorithm as the best parser for

Indonesian language. However, after checking the errors in the

graph-based parser, we found that most of the errors were

because of the incorrect POS tags assigned to some words in

sentences with more than 1 predicate.

TABEL I

BASELINE PARSER RESULT

No Baseline Parser
Score

UAS LAS

1 MaltParser Nivre arc-eager 76.87% 66.71%

2 MaltParser Nivre arc-standard 74.92% 66.95%

3
MaltParser Covington non-
projective

72.64% 65.17%

4 MaltParser Covington projective 72.64% 65.55%

5 MaltParser Stack projective 74.13% 64.36%

6 MaltParser Stack eager 75.00% 67.33%

7 MaltParser Stack lazy 74.51% 67.02%

8 MaltParser Planar 76.91% 67.80%

9 MaltParser 2-Planar 76.31% 67.73%

10 MSTParser Eisner 74.18% 37.23%

11 MSTParser Chu-Liu-Edmonds 74.02% 35.61%

12
Ensemble Eisner – Chu-Liu-

Edmonds - Planar
74.02% 63.45%

We can also see from Table I that all parsers from

MSTParser have a low LAS score. We deduced that the low

LAS score is caused by MSTParser’s first-order feature, which

only considers the candidate head and dependent. The lack of

context features in the first-order graph-based parser causes a

considerably worse performance in labeling dependency than

the transition-based parser, which is much richer in feature

representation.

Table II shows the neural network parsers results. We can

see that the usage of word embedding allows significantly

better parsing results, with 5% increase. The usage of word

embedding prevents most common mistakes that tend to

happen in non-word embedding parsers. Even with several

POS tagger errors in the corpora, the neural network parser is

still able to achieve a better UAS and LAS scores consistently.

Unfortunately, we couldn’t determine how the character-

based embedding contribute to parsing accuracy. The neural

network parsers that use the character-based embedding

perform better and worse at the same time than the baseline

parsers, especially on OOV words. The difference in

performance is affected by two factors. The first one is the

addition of character-based embedding also changes how

much the other weights are updated. The second one is how

the character-embedding replaces the pre-trained embedding.

The pre-trained embedding is created by using the projection

matrix (which is actually the weights coming from the input

word), while the character-based embedding is created by

concatenating two output vectors created by the character-

based Bi-LSTM. The representation difference causes the

character-based embedding to be treated as noise.

Table III shows the parsing results for sentences with

ellipsis and gerund. Using the neural network parser with

word embedding increases the parsing accuracy for both types

of ellipsis. A surprising result, however, can be seen on the

gerund result. In this case, the neural network parser performs

considerably worse than the baseline parser. In most cases, the

neural network parser almost consistently assigned the gerund

as the root of the sentence, especially if the gerund shows

before the root verb.

Fig. 4 shows an example of a case where the gerund is

parsed incorrectly. In this example, Mendaki from Mendaki

gunung is a gerund and should have created a dependency

triple (Mendaki, didominasi, csubj). Instead, our parser created

a dependency triple (Mendaki, ROOT, root). Another wrong

parsing example (dependency trees not shown in this paper) is

Menurutnya, bersenandung menenangkan jiwa (According to

him, humming soothes your soul). In this case, our parser

made a dependency triple (bersenandung, ROOT, root) while

it should have been (menenangkan, ROOT, root).

From this result, we can conclude that adding the word

embedding does not solve the gerund parsing problem. We

found out that the problem lies on the dependency labels. Our

current dataset treats all subjects, regardless of their form, as

nsubj (nominal subject), while they should have been treated

as csubj (clausal subject). Since there are too few sentences

that have gerund(s) in the dataset, it caused difficulties in

recognizing a gerund as a nominal instead of as a predicate.

The POS tag of gerunds may also contribute to the parsing

difficulties, due to it also having a verb POS tag, which is

often attributed as the predicate of the sentence. The lack of

verb forms that specialize as a gerund (like VBG in Penn

Treebank POS tags) makes it difficult for Indonesian parsers

to differentiate the gerunds and the predicates.

VI. CONCLUSIONS

We have modified the available Indonesian dependency

corpus by using standard INACL POS Tags and adding 50

sentences with gerund and ellipsis. We also created a neural

network dependency parser that uses word embedding as one

of the main features. We expanded the neural network parser

based on Kiperwasser & Goldberg’s architecture by adding a

character-based embedding.

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 18

TABLE I. NEURAL NETWORK PARSERS RESULTS

No Embedding
CBOW /

Skipgram

Window

size

Score without character

embedding

Score with

character

embedding

UAS LAS UAS LAS

1

word2vec

CBOW 1 81.89% 75.72% 82.65% 76.51%

2 Skipgram 1 81.81% 75.71% 82.45% 76.06%

3 CBOW 2 82.09% 75.95% 82.17% 75.96%

4 Skipgram 2 82.26% 75.78% 81.94% 75.72%

5 CBOW 5 82.41% 75.93% 82.30% 75.92%

6 Skipgram 5 82.08% 75.81% 82.02% 75.74%

7

wang2vec

CBOW 1 81.89% 75.61% 82.11% 75.97%

8 Skipgram 1 82.56% 76.04% 81.54% 75.26%

9 CBOW 2 82.32% 76.18% 82.30% 75.91%

10 Skipgram 2 81.90% 75.80% 81.96% 75.85%

11 CBOW 5 82.16% 75.89% 82.13% 75.81%

12 Skipgram 5 82.30% 76.01% 81.98% 75.76%

13

fasttext

CBOW 1 82.33% 76.00% 82.06% 75.71%

14 Skipgram 1 81.58% 75.37% 82.11% 75.83%

15 CBOW 2 81.92% 75.59% 82.08% 75.85%

16 Skipgram 2 82.21% 75.70% 82.28% 76.04%

17 CBOW 5 82.14% 75.71% 82.18% 76.00%

18 Skipgram 5 82.02% 75.82% 82.19% 76.05%

TABLE II. PARSER RESULTS ON SENTENCES WITH ELLIPSIS AND GERUND

No Parser
Anaphora Cataphora Gerund

UAS LAS UAS LAS UAS

1 MaltParser Planar 81.55% 74.36% 77.93% 73.81% 24%

2
Kiperwasser & Goldberg, without character

embedding, wang2vec, window 1, CBOW
84.22% 80.22% 84.79% 80.99% 12%

Jurnal Linguistik Komputasional (JLK), Vol. 3, No. 1, Maret 2020

Korespondensi : Ayu Purwarianti 19

REFERENCES

[1] J. Nivre et al., “Universal Dependencies v1: A Multilingual Treebank

Collection,” Proc. 10th Int. Conf. Lang. Resour. Eval. (LREC 2016),

pp. 1659–1666, 2016.

[2] M. Nizami and A. Purwarianti, “Modification of Chu-Liu/Edmonds

algorithm and MIRA learning algorithm for dependency parser on

Indonesian language,” Proc. - 2017 Int. Conf. Adv. Informatics

Concepts, Theory Appl. ICAICTA 2017, 2017.

[3] A. Kuncoro, “Pemanfaatan Pengurai Dependensi Ensemble dan Teknik

Self-Learning untuk Meningkatkan Akurasi Pengurai Bahasa

Indonesia,” 2013.

[4] A. Rahman and A. Purwarianti, “Ensemble Technique Utilization for

Indonesian Dependency Parser,” 31st Pacific Asia Conf. Lang. Inf.

Comput., 2017.

[5] J. Nivre, J. Hall, and J. Nilsson, “MaltParser: A data-driven parser-

generator for dependency parsing,” Lr. 2006, vol. 6, pp. 2216–2219,

2006.

[6] J. Nivre, “An efficient algorithm for projective dependency parsing,”

Proc. 8th Int. Work. Parsing Technol. IWPT, pp. 149–160, 2003.

[7] M. Kuhlmann, C. Gómez-Rodríguez, and G. Satta, “Dynamic

programming algorithms for transition-based dependency parsers,”

ACL-HLT 2011 - Proc. 49th Annu. Meet. Assoc. Comput. Linguist.

Hum. Lang. Technol., vol. 1, no. 1974, pp. 673–682, 2011.

[8] R. Johansson and P. Nugues, “Investigating multilingual dependency

parsing,” Proc. Tenth Conf. Comput. Nat. Lang. Learn. (CoNLL-X

2006), no. June, pp. 206–210, 2006.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation of

Word Representations in Vector Space,” arXiv Prepr. arXiv1301.3781,

pp. 1–12, 2013.

[10] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,

“Distributed Representations of Words and Phrases and their

Compositionality,” pp. 1–9, 2013.

[11] W. Ling, C. Dyer, A. W. Black, and I. Trancoso, “Two/Too Simple

Adaptations of Word2Vec for Syntax Problems,” Proc. 2015 Conf.

North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol., pp.

1299–1304, 2015.

[12] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching Word

Vectors with Subword Information,” 2016.

[13] E. Kiperwasser and Y. Goldberg, “Simple and Accurate Dependency

Parsing Using Bidirectional LSTM Feature Representations,” Acl, vol.

4, pp. 313–327, 2016.

[14] G. Genthial, “Sequence Tagging with Tensorflow.” [Online]. Available:

https://guillaumegenthial.github.io/sequence-tagging-with-

tensorflow.html. [Accessed: 14-Oct-2018].

[15] H. Alwi, H. Lapoliwa, A. M. Moeliono, and S. Dardjowidjojo, Tata

Bahasa Baku bahasa Indonesia, 3rd ed. Balai Pustaka, 2000.

